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1 Introduction

An average of three hurricanes make landfall in the United States each year, typically con-

centrated along the Gulf and east coasts. These storms are characterized by strong winds and

heavy rainfall that can generate substantial damage to physical infrastructure. The frequency

and intensity of hurricanes, which are fueled by warm ocean temperatures in the tropics, are

forecasted to increase substantially under climate change, along with the economic damage

that accompany them.

While the initial damage from hurricanes is physical, they can lead to a wide range of

behavioral and market responses that shape local economic equilibria, such as changes in

disaster risk perceptions, migration, and employment opportunities, among others.1 In this

paper, we study the housing market responses to all hurricanes that make landfall in Florida

between 2000 and 2016. Two features of our research design are substantively different from

past studies. First, we examine all storms to assess the impacts of more typical storms, rather

than a single extreme storm such as Hurricane Katrina.2 Our findings are thus not compli-

cated by government capacity shortages, rebuilding bottlenecks, philanthropic investments,

and foreclosure moratoria that generally accompany severe events. Second, we exploit an

identification strategy that better captures general equilibrium effects. These are especially

important since hurricanes are likely to impact housing supply as a result of destruction as

well as housing demand as homeowners and businesses may learn more about risks in a

particular location.

Our rich transaction-level data also allow us to examine the implications of these ad-

justments on local demographics. Even if price effects are transient, changes in the compo-

sition of neighborhoods can have long-lasting impacts by altering the distribution of rents

associated with access to local economic opportunities and amenities (Kling et al., 2005,

2007; Chetty et al., 2016). This paper is among the only existing studies to present micro-

evidence directly linking demographic changes to home transactions in response to local

1Past literature has examined household responses (Gagnon and Lopez-Salido, 2014; Bleemer
and Van der Klaauw, 2017; Gallagher and Hartley, 2017; McCoy and Zhao, 2018), migration patterns
(Paxson and Rouse, 2008; Boustan et al., 2017), industry and labor market consequences (Groen and
Polivka, 2008; McIntosh, 2008; Belasen and Polachek, 2009; Deryugina et al., 2018; Seetharam,
2018), macroeconomic growth (Skidmore and Toya, 2002; Hsiang and Jina, 2014; Strobl, 2011), and
government spending (Deryugina, 2017).

2Studies based on single storms include Bin and Polasky (2004); Hallstrom and Smith (2005);
Kousky (2010); Atreya et al. (2013); Bin and Landry (2013); Ortega and Taspınar (2018); Gibson and
Mullins (2020).
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disaster shocks in a general equilibrium setting.3

Our analysis is based on hurricane data from the National Oceanic and Oceanographic

Association (NOAA) along with a detailed housing dataset that combines transaction records

and county tax assessments. The transaction data include 95% of all housing transactions

within the State of Florida. The repeated tax assessments over time provide rich information

on hedonic characteristics for each parcel, thereby allowing us to infer characteristics of

transacted homes with a high level of accuracy. These data allow us to identify and track

individual parcels over time, as we observe most transactions and major renovations that

took place between 2000 and 2016.

Our estimation strategy is unique in the literature, combining a staggered difference-in-

differences framework that exploits the randomness in the paths and timing of hurricanes

with a repeat sales model that ensures credible identification of within-home price changes.

Treatment for an individual parcel is defined as being exposed to hurricane-strength wind

speed, independent of damage to that particular parcel. We find that home prices increase in

exposed areas in the three years following a hurricane. Compared to unexposed areas, home

prices in exposed areas are 5% higher on average during this period, with a peak of 10%

in the second year. This effect is identified in two models. The first uses variation within

census tract while controlling for property characteristics, seasonality, and differential eco-

nomic growth across counties. The second model employs parcel fixed effects and therefore

restricts the identifying variation to result from repeated sales of the same property. The

estimates are very similar across the two models, providing strong evidence that the price

effect is mainly driven by within-home appreciation rather than a shift in the composition of

transacted homes.

We also find that the transaction probability of homes in exposed areas falls by 0.7 per-

centage points or 7% of the baseline probability. The timing of this quantity effect is similar

to that of the price effect: both last around three years before returning to the baseline. Taken

together, they suggest that the housing markets within exposed areas experience a temporary

negative supply shock. The duration of this effect is consistent with the time it takes for

hurricane victims to seek financial aid from insurance companies or federal agencies, and to

eventually restore any substantially damaged homes to habitable or sellable conditions.4

3Bakkensen et al. (2019) examine changes in the racial composition of home buyers as a demand-
side response to changes in the salience of flood risk.

4Housing shortages of this nature have been increasingly identified by media reporting on recent
hurricane events. See, for example, the Wall Street Journal’s coverage of the impact of Hurricane Irma
in the Florida Keys (https://www.wsj.com/articles/hurricane-irma-destroyed-25-of-homes-in-florida-
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While the adjustment in the market equilibrium appears to be transitory, our analysis sug-

gests that it generates lasting impacts on the demographics of homeowners. Using the subset

of our housing transactions that can be matched to Home Mortgage Disclosure Act (HMDA)

records, we show that the average income of new buyers increases nearly proportionally to

the rise in home prices.5 In subsequent years, transacted prices and buyer incomes return to

baseline levels but not below, yielding a long-term stock effect whereby more than a quarter

of homes are occupied by households with a higher income than before the hurricane arrived.

On the other hand, we do not find any major changes to the racial, ethnic, or gender profiles

of buyers, suggesting that the socio-demographic characteristics of neighborhoods are quite

stable in the face of these housing market shocks. The distributional impacts we measure are

of direct relevance to any assessments of the equity impacts of hurricanes, and they provide

a unique opportunity to explore the implications of gentrification in a causal framework.

These findings contribute to our understanding of housing market responses to disasters.

Most of the literature studying the impact of disasters on home prices focus on estimating

how risk is capitalized (Bin and Polasky, 2004; Hallstrom and Smith, 2005; Kousky, 2010;

Atreya et al., 2013; Bin and Landry, 2013; Ortega and Taspınar, 2018; Bakkensen et al.,

2019; Gibson and Mullins, 2020), or the effect of actual damage (Daniel et al., 2009; Atreya

and Ferreira, 2015; Beltrán et al., 2019). This paper, in contrast, captures the general equi-

librium effects from both the demand and supply-side responses to hurricanes. This is most

similar to Murphy and Strobl (2010), who estimate a two-equation model of hurricane im-

pacts on income and housing prices using CBSA-level data. While they also find a transitory

increase in prices, our use of dis-aggregated demographics data further reveal changes in

buyer income associated with housing turnover. This finding of higher home buyer income

is consistent with Sheldon and Zhan (2019), who find that homeownership decreases in ar-

eas hit by disasters. The post-disaster markets might select for wealthier buyers as they have

greater ability to absorb the price increase and self-insure against future disaster damage. As

discussed in Kuminoff and Pope (2014), the marginal willingness-to-pay for amenities can-

not be reliably recovered from price changes if the hedonic equilibrium changes due to, for

example, changes in the mix of home buyers and their preferences. Our findings of a domi-

nant supply response and the associated change in demographics thus provide an important

caveat in the use of such shocks to back out preferences for avoiding disaster risks.

keys) or that of Hurricane Florence in North Carolina (https://www.wsj.com/articles/hurricane-
florence-creating-housing-shortage-for-displaced-north-carolinians).

5These transactions involve properties with similar home characteristics and price dynamics to
the entire market.
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This paper is also closely related to the growing literature that examines the impacts of

wars and disasters on local economic activity through the destruction of capital and infras-

tructure (Ikle, 1951; Davis and Weinstein, 2002; Miguel and Roland, 2011; Gignoux and

Menéndez, 2016; Feigenbaum et al., 2022). In general, these studies find that cities were

able to recover quickly from such destruction, even in the case of flooding where the event

carries risk signals (Kocornik-Mina et al., 2020). Consistent with these findings, we also

see a lack of longer-term response in local housing markets, which raises questions about

institutional and behavioral barriers in the housing market that might prevent its participants

to fully process and respond to risk information (Bakkensen and Barrage, 2021; Keys and

Mulder, 2020; Ouazad and Kahn, 2021).

The remainder of the paper is organized as follows. Section 2 describes the data, Section

3 develops our estimation framework, Section 4 reports and interprets the results, and Section

5 concludes.

2 Background and Data

We have two objectives in this paper: first, to examine the equilibrium adjustments in the

housing market following a hurricane; second, to understand the implications for population

turnover. The first objective requires data that represents the universe of transactions, and the

second requires demographic information on the home buyers. We build a comprehensive

dataset that combines Florida hurricane exposure at the parcel level, housing transactions,

tax assessments, and mortgage-holder demographics. This section gives an overview of the

background and data.

2.1 Florida Housing Market

Florida is the third most populous state in the U.S, with racial and ethnic composition varies

considerably across locations within the state. South Florida has a large Hispanic population,

while the panhandle has the state’s highest concentration of Blacks (Figure A3). Home to a

large number of seasonal residents, Florida has higher homeowner vacancy rate (2-6%) and

rental vacancy rate than those of nearby states (Figure A4).

Our primary source of housing data is the Zillow Transaction and Assessment Dataset

(ZTRAX). The data cover Florida housing transactions between 2000 and 2016, accounting

for around 95% of all transactions over this period. Each transaction record contains infor-
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mation on the timing of the sale, transaction price, mortgage profile (including loan amount

and lender’s name), location, as well as buyers’ and sellers’ names. We exclude three types

of transactions where the price likely deviates from the home’s market value: (1) non-arm’s-

length transactions6; (2) foreclosure sales7; and (3) transactions that involve multiple homes

on different parcels.

We also obtain parcel-level8 assessment records over the same period from ZTRAX,

which are originally generated by the county assessor’s offices. The assessment data con-

tain an essential set of hedonic characteristics for each parcel, including square footage, year

built and remodeled, lot size, number of rooms, number of bathrooms, number of units, and

land use codes. We group homes into three property types based on land use classifications

in county tax assessments: single-family residence (69.7% of all sample transactions), con-

dominium (24.1%), townhouse (6.2%).9 Importantly, we observe multiple assessments for a

single parcel and hence can track changes in these characteristics over time. The transaction

and assessment datasets are matched by parcel and assessment year to ensure the condition

of each property at the time of transaction is accurately reflected in the data.

The data contain precise geographic coordinates for each parcel, which we use in two

major ways.10 First, we determine the hurricane exposure of any home by directly calculating

its distance from a hurricane track, as described below. Second, we use the coordinates in

conjunction with detailed shapefiles to accurately identify the census tract for each parcel.11

This in turn allows us to match housing transactions to mortgage records from HMDA with

high accuracy, ultimately enabling us to exploit fine geographic variation in our estimation.

Table A1 provides summary statistics on the three samples of housing transactions used

6An arm’s length transaction is one in which the buyers and sellers act independently and do not
have any relationship to each other. An example of a non-arm’s-length transaction is one between
family members, where the price is often lower than market value. We rely on a combination of
Zillow’s internal code and the type of deed to determine the nature of the transaction.

7Foreclosed properties are often sold at substantially lower prices than comparable non-
foreclosure sales, partly because lenders have an incentive to sell them quickly. For example, Camp-
bell et al. (2011) finds an average foreclosure discount of 27% in Massachusetts.

8A parcel is also known as a lot or a plot. It is a defined piece of real estate, usually resulting from
the division of a large area of land.

9Other common terminology for these are respectively single-family detached, multi-family, and
single-family attached.

10The longitude and latitude measures are reported with a precision of five decimal places (or 1.11
meter at the equator).

11Florida’s 67 counties are comprised of more than 4200 census tracts. Shapefile source:
TIGER/Line Shapefiles, Census Bureau. Available at https://www.census.gov/geo/ maps-
data/data/tiger-line.html.
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in the analysis. In the full sample, the median home price is $155,000 while the average is

$272,775, suggesting the distribution is skewed to the right. Since we match buyers with

mortgages (henceforth “borrowers”) to HMDA records, we also report these statistics for the

sample of all Zillow borrowers and the sample of matched transactions, representing 57%

and 27% of the full sample respectively.

2.2 Hurricane History and Exposure

Florida is located on the peninsula between the Gulf of Mexico and the North Atlantic,

and its unique geography has exposed it to more hurricanes than any other U.S. state. A

tropical cyclone is classified as a hurricane when the 1-minute sustained wind speeds reach

64 nautical miles (kn) per hour (or 74 mph). Between 1992 and 2017, a total of fifteen

hurricanes swept past parts of Florida. Of these, five reached wind speeds corresponding to

Category 3 and above within Florida.12

Each hurricane is recorded in six-hour intervals in the Tropical Cyclone Extended Best

Track dataset.13 Each observation consists of the geographic coordinates of the center, max-

imum sustained wind speed, and maximum radial extent of 34, 50, and 64 kn wind speeds.

Following the approach in Deryugina (2017), we approximate the full hurricane path by

linear interpolation between consecutive observations.14 Since the maximal reach radius of

96 kn is not provided in the dataset, we construct a measure by estimating a nonlinear re-

lationship between wind speed and its reach radius (see Appendix B.1 for details on this

procedure).

Throughout this paper, we define hurricane exposure by whether a location was ever

within the reach of a 64 kn wind speed radius along a hurricane path. Severe exposure is

similarly defined but with a 96 kn wind speed.15 This requires proximity to the hurricane

path as well as high sustained wind speed at that stretch of the path. In our hurricane sample,

12Thresholds for the Saffir–Simpson hurricane wind scale are: Category 1, 74-95 mph; Category
2, 96–110 mph; Category 3, 111–129 mph; Category 4, 130–156 mph; Category 5, 157+ mph.

13Data source: Demuth et al. (2006). Available at http://rammb.cira.colostate.edu/research/
tropical-cyclones/tc-extended-best-track-dataset/.

14We also assume the hurricane center travels with constant speed between two consecutive obser-
vations, while wind speed and radii change linearly with time. See Appendix B.2 for more details on
the interpolation procedure.

15We use the category 3 speed threshold both to be in line with previous literature, and because
we do not believe the difference between the categories 1 and 2 thresholds is sufficient to produce
measurable differences in outcomes. Category 4 wind speeds, on the other hand, almost never reach
Florida shores over our hurricane time period.
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Figure 1: Florida Hurricane Exposure by Census Tract, 1992-2017
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(b) Category 3+
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Notes: these figures depict hurricane exposure by census tract across Florida. Panel (a) shows the
number of times each census tract was exposed to hurricane-strength wind speed (64 nautical miles
per hour and above) and Panel (b) shows the number of times each was exposed to category 3 wind
speed (96 nautical miles per hour and above) between 1992 and 2017. Calculations are based on
hurricane track point measurements and census tract population centroids, but exposure is defined at
the property level in the main analysis.

the average radius of 64kn wind speed is 95 miles, and that of 96 kn wind is 45 miles. One

caveat here is that we define exposure to be symmetric around the hurricane eye, but in the

northern hemisphere winds tend to be stronger on the right side of the eye relative to the

storm motion. As hurricane paths vary considerably, this is likely to introduce measurement

errors but not systematic bias in our exposure measure. In the analysis, we will examine the

robustness of our results to excluding observations close to the exposure threshold.

Figure 1 shows the geographic distribution of hurricane events by census tract, defining

exposure using their population-weighted centroids. In Panel (a), we see that approximately

90% of tracts experience at least one hurricane event between 1992 and 2017, with high

variation in frequency across locations. We plot the distribution of severe exposure events

separately in panel (b). This set of locations is much more limited (16%) and concentrated

in south Florida. The average census tract experiences 2.6 hurricane events and 0.16 severe

exposure events between 1992 to 2017.

This definition of hurricane exposure primarily identifies areas along the hurricane paths,
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where hurricane damages are most concentrated. Wind speed is not only directly associated

with wind damage (Nordhaus, 2010; Emanuel, 2011), but also correlated with the severity

of storm surge and flood damage, which we also independently verify in this paper using

flood insurance claims. It is important to note that this measure does not represent property-

level damage, but rather the exposure and overall damage level in the neighborhood. Our

estimates therefore capture the combined impacts of the damage to a subset of housing and

the general equilibrium effect from the ensuing housing shortage.

2.3 Home Mortgage Disclosure Act

The Home Mortgage Disclosure Act (HMDA), enacted by Congress in late 1975, requires

large depository financial institutions16 to disclose all of their closed-end home lending ac-

tivity every year. The loans reported were estimated to represent approximately 90 percent of

closed-end home lending nationwide in 2016 (Dietrich et al., 2018). These records are made

publicly available to promote mortgage market transparency.17 Recent HMDA data provide

the origination year, property location (census tract), loan amount, application purpose (pur-

chase, improvement, or refinancing), mortgage lender’s name, and applicant demographics

including annual income, gender, and race.

We merge the subset of successful loan applications for purchases from HMDA to our

transaction data. Matches are based on the year of transaction, the census tract of the home,

the loan amount (to the nearest thousand), and the lender name.18 The full procedure ulti-

mately matches a little more than half of the original Zillow transactions with a mortgage,

with no significant yearly variation in pairing success.19 This match rate is comparable to

Bayer et al. (2016), who use a similar procedure to merge HMDA data to a universe of

housing transactions in the Bay Area.

16By the 2021 definition, large institutions were those with more than $48 million in assets. This
threshold is subject to a yearly revision.

17See http://www.ffiec.gov/hmda for more details.
18Appendix C provides more detail on the matching procedure.
19There are two main reasons why the match rate is not closer to 80%. First, because we cannot

distinguish between mortgages of the same amount issued by the same lender in the same census tract
in a given year, we drop all such observations. Second, we keep only high-quality matches based on
lender names.
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3 Econometric Framework

This section describes our research design. The first part of our analysis concerns post-

hurricane adjustments in the housing market. We study two main outcomes that characterize

the equilibrium: housing price and transaction probability. We model each separately with

different units of analysis, but both specifications ultimately rely on the randomness of hur-

ricane paths and their timing as the identifying variation. In the second part of the analysis,

we use the framework from the housing price model to examine population turnover.

3.1 Housing Price Model

We model the transaction price of a home as follows:

log(Priceimy) =
10∑

τ=−6

βτHurr
τ
imy + γ′Xiy + δht + δhm + δhcy + εimy (1)

where i denotes an individual transaction, m is the month and y the year of the transac-

tion, h is the type of the transacted property, and t is the census tract and c the county of

the property.20 The unit of analysis is an individual transaction. The dependent variables

log(Priceimy) is the log of the price in transaction i occurring in month m of year y.21

Hurrτimy is a set of indicators specifying whether the transaction occurs τ years after the

house was exposed to a hurricane (τ = 0 refers to transactions in the first twelve months

after a hurricane, τ = 1 the next twelve months, and so on; a negative τ indicates the trans-

action happens before the hurricane).

The vectorXiy contains two main sets of control variables. The first is a set of house char-

acteristics commonly used in hedonic regressions, including lot size, structural age, effective

age,22 number of stories and number of bathrooms.23 Remodels can lead these variables to

change over time for a given parcel, and we assign characteristics from the latest assessment

that precedes the transaction. The second set of covariates are interaction terms between year

indicators and the property’s distance to the shoreline, which controls for the time-varing ef-

20Census tracts and counties are defined according to the 2000 census definition throughout to
maintain geographic consistency across time.

21Similarly to most of the hedonic pricing literature, we use the log of the transaction price to
address the skewed distribution of prices, as well as to obtain plausible effects over a wide range of
price levels.

22The time (in years) since the last major remodel.
23We control for the number of stories and the number of bathrooms flexibly using bins.
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fect of being close to the shore. It is important to control for this effect because homes closer

to the shore might have appreciated more than the average property during the housing boom

between 2003-2007, which could be picked up by the event coefficients if they are also more

exposed to the hurricanes during this time.

We also account for both fixed and time-varying regional differences in housing attributes

and local amenities by using a set of geographic and temporal fixed effects. δht denote census

tract fixed effects, which absorb cross-sectional correlations in the likelihood of being hit by

a hurricane and time-invariant local amenities, such as proximity to the coast. δhm denote

month-of-year fixed effects that control for the seasonality in both home prices and the timing

of hurricanes. It is also important to account for housing market booms and busts during our

sample period, especially given their uneven impacts across markets (Ferreira and Gyourko,

2012). We use county-by-year fixed effects (δhcy) to control for changing macroeconomic

conditions at the county level. Finally, all fixed effects are also interacted with the property

type (h).

The variables of interest are the hurricane indicators. They are constructed based on

the definition of hurricane exposure for individual parcels as described in Section 2.2.24 The

identification of the causal effect of hurricanes on the housing market relies on the exogeneity

of storm paths and timing. Specifically, the identifying assumption is that, conditional on the

set of controls, these indicators are orthogonal to any idiosyncratic shocks to transaction

prices:

E[εimy ×Hurrτi |Xiy, δht, δhm, δhcy] = 0 ∀τ.

Our estimation is thus based on a staggered difference-in-differences (DD) framework with

many hurricane treatments at different times.25 Areas exposed to a hurricane are compared

to unexposed areas before and after the hurricane in a repeated cross-section of housing

transactions.

There are two main advantages to using this set of event time indicators rather than

a single indicator as in a standard DD specification. First, the post-hurricane indicators

estimate dynamics flexibly rather than imposing any restrictions on the trend or duration

of the market adjustments. These dynamics provide important insights into the adjustment

24Specifically, we calculate exposure to each of the 15 hurricanes for each transacted property. We
then construct the hurricane indicators based on the transaction timing relative to all hurricane events
the house is exposed to.

25This design has been used by several studies of the economic impacts of natural disasters such
as Belasen and Polachek (2009), Strobl (2011), Gallagher (2014), Hsiang and Jina (2014), Deryugina
(2017), and Boustan et al. (2017)
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process. Second, this approach allows us to assess the credibility of our DD design by

estimating and comparing pre-hurricane trends directly.

Throughout this paper, we cluster standard errors at the county level to allow for cor-

relations in the idiosyncratic shocks to all transactions occurring in the same county over

the entire sample period. Furthermore, we estimate the following four variants of our main

specification.

Repeat sales. Hurricanes may change the composition of transacted homes. Equation

(1) used an exhaustive set of controls to greatly limit the extent to which our estimates could

be driven by compositional shifts, but to fully eliminate within-tract selection of transacted

attributes, we replace the census tract fixed effects (δht) with parcel-level ones (δp):

log(Priceimy) =
10∑

τ=−6

βτHurr
τ
imy + γ′Xiy + δp + δhm + δhcy + εimy (2)

This approach restricts the identifying variation to sales of properties that transact more than

once over our time period, and holds all time-invariant characteristics fixed (Cannaday et al.,

2005; Hallstrom and Smith, 2005; Harding et al., 2007).26

Wind intensity heterogeneity. We explore the heterogeneous effects of different wind

intensities, as we expect stronger winds to result in more severe damages to the housing

stock. Specifically, we split the sample into areas exposed to Category 1-2 wind speeds and

those exposed to the faster winds of Category 3 and above storms, as discussed in Section

2.2. We estimate the dynamics of both groups simultaneously using interactions of pooled

category indicators with event time indicators.

Other outcome variables. Understanding any systematic shift in housing or buyer char-

acteristics after a hurricane is critical for us to assess the nature of market responses to the

disasters. To do so, we replace the outcome variable in equation (1) with other characteristics

of interest, including lot size and buyer income.

Standard DD. To summarize our results, we also estimate a standard DD model, defining

treatment as exposure to a hurricane in the 36 months preceding a sale. The identifying

assumption for this specification is the same as that for the event study specification, but we

rely on the evidence from the results of the event study to determine the length of the housing

market adjustments.

26This approach is used to generate several major house price indices, including the Case-Shiller
Index, Federal Housing Finance Agency’s (FHFA) monthly House Price Index, and CoreLogic’s
LoanPerformance Home Price Index.
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3.2 Transaction Probability Model

Market equilibria are characterized by both prevailing prices and quantities. At the individual

home level, transacted quantity is either zero or one. Formally, let 1(Transacted)py be

an indicator of whether a transaction record exists for parcel p in year y. We model its

relationship to hurricane events as follows:

1(Transacted)py =
10∑

τ=−6

βτHurr
τ
py + γ′Xpy + δp + δhy + δcy + εpy. (3)

where p, h, y, and c denote parcel, property type, year, and county as before. Here, the

unit of analysis is a parcel-year. We construct a balanced panel of parcels that have ever

been transacted during our sample period.27 We treat all parcel-year observations without

a transaction record as having no transaction. This approach introduces measurement error

if there are unreported transactions, which could lead to biased estimates if the missing

pattern is endogenous to or correlated with hurricane events. In our analysis, we drop all

observations for counties that did not start reporting transactions until after the beginning

of our sample period.28 We exclude all parcels with structures built after 2000, so that this

panel consists of the transacted housing stock that was present since the beginning of the

study period.

We construct the panel by year rather than by month because of computational con-

straints. As most hurricanes between 2000 and 2016 occurred in August, we set event years

to begin in August and end in July. For example, a transaction in an area exposed to Katrina

(August 2005) has its year 0 indicator turned on only if it occurs between August 2005 and

July 2006. This ensures a correct event year classification for the vast majority of transac-

tions, an uncontaminated event year -1 indicator, and a small and predictable downward bias

in the estimate of the event year 0 indicator.29

Despite the differences in the data structure, this model shares many similarities to the

one on housing prices. It follows the same event-study specification and also controls for

27As discussed in Section 2, we also exclude three types of transactions that might not reflect
market conditions.

28These counties drive an insignificant fraction of Florida’s housing market activity, with combined
sales accounting for less than 1% of total sales over the period in which we observe sales in all
counties (2005-2016).

29The year 0 indicator is slightly attenuated because it captures some transactions in areas affected
by four hurricanes in the couple months before these actually took place. These are Wilma (October
2005), Frances and Jeanne (September 2004), and Matthew (September 2016).
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time-varying property characteristics observed from repeated assessments. Because the

threat to identification is similar to that from the previous model, we include parcel fixed

effects, county-by-year fixed effects, and type-by-year fixed effects. As such, our identifica-

tion assumption is also similar to that of our prior model and requires that:

E[εpy ×Hurrτp |Xpy, δp, δhy, δcy] = 0 ∀τ.

Our dataset includes three main parcel types: single-family residence, condominium,

and townhouse. Since substitutability between these may be limited, we also estimate this

transaction probability model separately for each type. The type-by-year fixed effects are

eliminated in these estimations. Standard errors are clustered at the county level throughout.

3.3 Variation in Hurricane Exposure

Figure 1 shows that hurricane exposure in Florida is quite dispersed geographically. In this

section, we take a closer look at variation over time as well as the relative contribution by

individual hurricanes.

In our regression models, we use a set of event time treatment indicators to estimate dy-

namics of various outcome variables. In Table A10, we tabulate the means of these indicators

in the price model and show the contribution of each hurricane to treatment saturation. The

share of treated transactions fluctuates between 8 and 12% across event years. In Table A11,

we generate a similar variation profile for the transaction probability model as specified in

equation (3). Again, the total treated share is relatively stable at around 10%. Together, these

patterns underscore the similarities in the identifying variation used in the two models.

Lastly, we examine variation in exposure to severe storms, which we define as experi-

encing category 3 or greater wind speeds (Table A12). The fraction of transactions having

been exposed to high wind speeds is small, less than 1% across all years. This greatly limits

the statistical power available to estimate the heterogeneous effects of higher wind speeds.

Further considering that the landfall of these storms is geographically clustered within south

Florida30 for which the parallel trends assumption is less likely to hold, these results will

ultimately be interpreted more cautiously.

30See Figure 1.
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4 Results

This section reports our results. We begin by estimating the post-hurricane dynamics in hous-

ing prices for areas affected by hurricanes while addressing potential composition effects in

Section 4.1. We then estimate how transaction probabilities are impacted for parcels in these

areas in Section 4.2. In Section 4.3, we discuss these results together and consider the un-

derlying mechanism. Section 4.4 examines the implications of these market adjustments on

local population turnover and Section 4.5 explores heterogeneity by hurricane intensity.

4.1 Post-Hurricane Price Dynamics

We begin by estimating the post-hurricane dynamics of housing prices following the event

study specification in equation (1). This analysis is based on all valid transactions (henceforth

“full sample”) regardless of whether a mortgage is involved. The first two columns of Table

A1 summarize the price and home attributes in these transactions.

The estimated coefficients of event year indicators are plotted along with their 95% con-

fidence intervals in Figure 2.31 None of the estimates for pre-hurricane indicators are statis-

tically different from zero, supporting our choice of fixed effects to control for preexisting

differences in average census tract prices, seasonality, and county-specific dynamics. Our

event year 0 and 1 estimates suggest that hurricanes result in increases in home prices of 5%

in the first and 10% in the second twelve-month periods after the strike. This surge in prices

appears to end sometime in the next twelve-month period (event year 2) as the estimated

increase relative to unaffected homes drops to 2% and is no longer statistically significant.

All later event year estimates are small and not statistically distinguishable from zero. To-

gether, these suggest a temporary surge in prices in the three years immediately following a

hurricane in exposed areas. In Table A3, we provide additional estimates using a standard

difference-in-differences specification, where we define a transaction as treated when it oc-

curred in event year 0-2. Consistent with the event study, the estimate suggests an average

three-year price increase of 5.9% for the entire market. When we estimate the price change

separately for each of our three property type (single-family residence, condominium, town-

house) we find that the increase is the largest for condominia, at 8.2%.

A possible reason for this price increase could be a shift in the distribution of transacted

homes: in the aftermath of a hurricane, homes with greater hurricane resistance or desir-

ability based on any characteristics which are unobserved in the data, may be more likely

31The estimates are also reported in column (1) of Table A13.
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Figure 2: Hurricane Effects on House Prices – Full Sample
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Notes: estimates from equation (1) are plotted with their 95% confidence intervals. The
results are based on the full sample of Florida home sales (N = 7,216,109). The model
controls for standard hedonic variables, the distance to shoreline interacted with year indi-
cators, and census tract, month, and county-year fixed effects. Standard errors are clustered
by county.

to be transacted. In the extreme, the price surge could be entirely driven by such composi-

tional shifts without reflecting changes in any individual home’s price. To investigate this

further, we re-estimate our price model with the inclusion of parcel fixed effects and restrict

the sample to only include homes that were transacted at least once both before and after a

hurricane. Results are plotted in Figure 3.32 Standard errors are larger because of the smaller

sample size, possibly as well as the more exhaustive set of fixed effects. On the other hand,

this specification produces more stable parallel trends, and more importantly, the previous

patterns are closely reproduced and of larger magnitude. Our point estimates imply that

properties on average sold at 5% higher prices in the event year immediately following the

hurricane, as much as 14% in the next event year, and 8% in the third event year. These re-

sults again suggest that homes sold in the first two to three years after a hurricane in exposed

areas appreciated relative to when they were sold outside of this post-hurricane window.

We next perform robustness checks using different subsets of the full sample to address

several concerns. First, comparing home price dynamics across the exposure boundary could

32The estimates are also reported in column (2) of Table A13.
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Figure 3: Hurricane Effects on House Prices – Repeat Sales
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Notes: estimates from equation (2) are plotted with their 95% confidence intervals. The
results are based on only parcels with repeated transactions appearing in both pre- and
post-hurricane periods (N = 1,338,384). The model also controls for age and effective age
at time of sale, the distance to shoreline interacted with year indicators, and parcel, month,
and county-year fixed effects. Standard errors are clustered by county.
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be problematic if the boundary is measured with noise or if there are large spillover effects

from the more exposed areas to nearby areas. To address this concern, we drop transactions

that are within 10 miles of either side of an exposure boundary and estimate the standard

DD specification. Results are reported in column (1) of Table A4. The estimate suggests an

average price increase of 7.6% in the three years after a hurricane, which is larger than the

main results. This shows our finding of a price increase is robust to excluding the comparison

of transactions near the boundary.

Another concern is that our sample contains hurricanes that occurred within three years

of each other. Some places were hit a second time while they were still adjusting from a

first hurricane hit. In all previously discussed specifications, we let the event time indica-

tors capture all events for transactions affected by multiple hurricanes. However, this could

result in misspecification if the composite effects of the two events are not the linear com-

bination of their respective dynamics. To determine whether our results are affected, we

re-estimate the main price regression but drop all transactions of properties which experi-

enced more than one hurricane within three years.33 As shown in column (2) of Table A4,

the estimate is very similar to the main estimates. Finally, we conduct a last robustness check

to address a broader concern regarding the property of our multi-way fixed-effect estimator

under dynamic treatment effects (see, for example, Goodman-Bacon (2018)). Specifically,

we construct a sample based on all transacted properties that were either never affected by

a hurricane or affected by a subset of hurricanes not occurring in three consecutive years.34

This ensures that the three-year dynamic responses to earlier hurricanes are not used as part

of the control for later hurricanes. The estimates based on this sample are reported in col-

umn (3) of Table A4. We find an average increase in home prices of 6.5% in the three years

post-hurricane. This also suggests that biases from overlapping treatment dynamics are not

likely to be the main driver of our results.

4.2 Post-Hurricane Dynamics of Transaction Probability

We now turn our attention to transaction probabilities and estimate their post-hurricane dy-

namics using equation (3). As described in Section 3, we construct a balanced panel of

parcels where each observation is a parcel-year with an associated indicator for whether or

not a transaction occurred in that year. The balanced panel approach requires that our analy-

33Transactions that occurred before the consecutive hurricanes are also dropped to avoid substantial
geographic imbalance in the remaining sample of transactions.

34These hurricanes are Andrew, Opal, Irene, Dennis, Katrina, Wilma, and Irma.
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sis focus only on parcels with structures built before 2000. We report summary statistics for

this panel in Table A2.

The estimates from the full sample are plotted along with their 95% confidence intervals

in Panel (a) of Figure 4.35 The baseline probability of transaction is around 10%. Again,

we see a stable pre-trend with all pre-hurricane indicators being statistically indistinguish-

able from zero. In event year 0, the estimate indicates a drop of 0.7 percentage points, or

seven percent of the baseline probability. The effect shrinks in the next two event years and

gradually returns to the baseline.

As shown in Table A2, the characteristics of the three property types are quite different

and substitutability between them may be limited. Considering the wide confidence intervals

for these estimates, each property type likely experiences different equilibrium dynamics.

Therefore, we also estimate the model for each type separately, and report these results in

Panels (b)-(d) in Figure 4.36

For single-family residences, which make up around 70% of Florida housing market

transactions, we observe a small but negative effect that peaks at 6 percentage points in event

year 1, which is marginally significant. For the other two property types, we find a larger

reduction in transaction probabilities. Condominia, representing around 20% of transactions,

are 3 percentage points less likely to be transacted in event year 0. Townhouses, which make

up the smallest share of the market at under 10%, experience a transaction probability drop

of 8 percentage point in the first two event years.

The standard DD estimates for all parcels and by property type are provided in Table A5.

Averaged over the three years immediately following a hurricane, our results reveal a 7.1%

market-wide decrease in transaction probability from a baseline of 10 percentage points.

The heterogeneous effects range from a 24% decrease for condominia to a 4% decline for

single-family residences relative to the baseline. The large drop in transaction probability in

the condominium market is particularly notable as it coincides with the largest increase in

transaction prices, as shown previously.

4.3 Mechanisms for Price and Transaction Probability Dynamics

In the previous sections, we show that areas hit by a hurricane see an increase in housing

prices and a concurrent fall in transactions. These dynamics together are consistent with

a negative supply shock. We further find that this shock is temporary, as both price and

35The estimates are also reported in column (3) of Table A13.
36This specification drops the property-type-by-year fixed effects, but is otherwise identical.
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Figure 4: Hurricane Effects on Transaction Probability by House Type

(a) All Parcel Types
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(b) Single-Family Residence
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(c) Condominium
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(d) Townhouse
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Notes: estimates from equation (3) are plotted with their 95% confidence intervals. Panel (a) plots the
results based on all parcel types (N = 49,302,345), Panels (b)-(d) are based on single-family residence
(N = 33,560,908), condominium (N = 12,832,339), and townhouse (N = 2,909,058), respectively.
The model controls for effective age, the distance to shoreline interacted with year indicators, and
parcel and county-year fixed effects. The model in Panel (a) also includes type-year fixed effects.
Standard errors are clustered by county.
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probability appear to respond for two to three years and eventually return to the baseline.

It is worth noting that this does not imply that hurricanes only induce supply-side adjust-

ments. In fact, localities exposed to hurricanes are likely to experience changes in housing

demand through mechanisms such as people updating their beliefs about local disaster risks

(Bin and Polasky, 2004; Hallstrom and Smith, 2005; Bin et al., 2008; Gibson and Mullins,

2020) as well as disruptions to local industries and labor markets (Belasen and Polachek,

2009; Seetharam, 2018). Our results should be viewed as net of these demand-side effects,

illustrating a general equilibrium adjustment. In this section, we further discuss the nature

of this negative supply shock and consider a number of alternative explanations.

Hurricanes generate extreme winds and major flooding that can cause severe damage to

buildings. To gauge the extent of such damage, we analyze flood insurance claims data from

the National Flood Insurance Program (NFIP). At the census tract level, we examine how the

number and amount of building damage claims respond to current-month hurricane exposure

using a similar regression structure (see Appendix D for more details).37 The results, reported

in Table A7, show that both the number of claims and total damage increase sharply with

hurricane exposure. Exposed census tracts have 5.8 more claims on average, which is almost

50 times the mean number of claims. The average claims also increase by $4461 or 20 times

the mean, indicating much more severe damage to each building. Together, these effects

amount to an average increase in total damages of $271,517.8, or 77 times the baseline level.

As the NFIP accounted for around 95% of all flood insurance policies throughout the study

period, these estimates capture the vast majority of insured flood losses. It should be noted,

however, that they do not capture wind damage or any uninsured flood damage, which can be

substantial.38 Therefore, the total physical damages from hurricanes are likely substantially

higher than our estimates.

As a result of the physical damage, part of the housing stock in exposed areas may be-

come uninhabitable in the short run, driving part of the negative supply shock. But severe

damage is also likely to lower transaction volume by making it very difficult to sell devas-

tated property. At the same time, displaced homeowners may need to temporarily rent in

unaffected neighboring regions (the costs of which are often eligible for insurance cover-

age and federal assistance). This increase in rental market demand could result in upward

pressure on housing prices, in particular on condominia if a larger share of these are used as

37We focus on current-month exposure because the NFIP claims are linked to the month of loss
and do not spill over to later months.

38See, for example, https://www.reuters.com/article/us-hurricane-irma-corelogic/corelogic-
estimates-hurricane-irma-property-damage-at-42-5-65-billion-idUSKCN1BU28T.
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rental properties.

The timing of our measured impacts is also consistent with that of reconstruction. It takes

time for homeowners to secure funds for the repair or rebuilding. For insured homes, the

insurance claim process might be prolonged by claim disputes and delays in damage when

insurance companies are overwhelmed by many claims.39 In addition, many homeowners

seek financial relief from the government when their insurance coverage is insufficient.40

This requires homeowners to navigate a highly complex and interlinked system of federal

programs and bureaucratic processes that can take months and sometimes more than a year to

result in some form of compensation.41 Moreover, the physical process of home restoration

also takes a long time. Anecdotal evidence suggests that post-disaster recovery is often

hindered by a shortage of construction labor, with many finding that it takes at least 18-24

months to repair or rebuild their significantly damaged homes after a large loss. Notably,

this duration is consistent with our observed effects on transaction probability and price,

thus destruction and reconstruction provide a highly plausible explanation for the dynamics

we observe. Below, we consider three additional potential mechanisms.

Additional mechanism 1: quality improvement through rebuilding

The rebuilding process may not only restore, but actually improve the condition of a dam-

aged home, thereby driving up its value. This could happen for a number of reasons. First,

the rebuilding project is often subject to stricter building codes than prevailed during original

construction.42 Second, communities that participate in the National Flood Insurance Pro-

gram (NFIP) must follow program rules regarding floodplain management that could also

lead to substantial improvements in housing quality.43 Lastly, hurricanes could fully destroy

39Assessing damage can be particularly difficult after a hurricane because wind damage is covered
by homeowners’ insurance, but flood damage is not, and hurricanes can cause both types of damages.
After Hurricane Katrina, for example, there were multiple lawsuits over the extent to which damages
should be covered.

40CoreLogic (2017) estimated that about 60% of homeowners do not insure their homes up to the
full replacement value. Moreover, only 47% of homeowners living in 100-year floodplains have flood
insurance.

41These include FEMA’s Individual Assistance and SBA’s Disaster Loan programs, and other state
and local government programs (Kutz and Ryan, 2006; Hoople, 2013; Deryugina et al., 2018; Kousky
et al., 2018).

42Florida building codes have been updated multiples times over the sample period. A 2018 report
on new residential building codes and enforcement systems by the Insurance Institute for Business &
Home Safety gave Florida a rating of 95/100, the highest score among all the states it evaluated.

43In particular, all substantially damaged properties in 100-year floodplains must be elevated
(Kousky, 2019).
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Figure 5: Changes in Characteristics of Transacted Homes – Effective Age
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Notes: estimates from a variant of equation (1) are plotted with their 95% confidence inter-
vals. The dependent variable is effective house age, which is the number of years since last
remodeled (if applicable). The results are based on the full sample of Florida home sales.
The specification controls for census tract, month, and county-year fixed effects. Standard
errors are clustered by county.

some structures in the poorest of conditions, sparing homeowners some of the demolition

costs, and setting in motion a new construction process that would have eventually taken

place anyway. The same could be true of more modest renovations, whereby an insurance

payout provides an extra incentive for a remodeling that was already being considered.

We explore this possibility by examining whether the effective age of houses transacted

after a hurricane is systematically different from other years. Effective age is defined as

the number of years since the last remodel, which we calculate by constructing a history of

home renovations using repeated assessment records over the sample period.44 If remodeling

drives price increases, we would expect the houses transacted in this period to have a smaller

effective age, because we would observe a recent renovation. In Figure 5, we plot the event

study coefficients from a specification identical to equation (1) but with effective age as the

dependent variable. The estimates do not reveal any significant changes in the effective age

44Most parcels are not assessed annually. A parcel is likely to be re-assessed when a major im-
provement (which requires permitting from the local housing authority) or transaction happens. For
each parcel, we pull together all available assessment records and fill in the missing years using the
previous assessment observation.
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of transacted homes in hurricane-exposed areas.

While we do not observe all renovations, most major remodeling projects would require

a permit and thus trigger an observable reassessment. These include structural or electrical

projects and others that cost more than a few thousand dollars (though thresholds vary across

counties). Smaller projects (such as repainting or new flooring) do not require a permit, but

they are also less likely to materially move prices. Moreover, while compliance with the

permitting process is imperfect, it is harder to evade for larger projects, and far riskier for

projects funded by insurance payouts or FEMA assistance. For all of these reasons, we

conclude that non-observed remodels are unlikely to play a significant role in explaining the

overall market dynamics revealed by our analysis.

Additional mechanism 2: composition shift through information revelation

As discussed in Section 4.1, we first control for major hedonic characteristics and subse-

quently include parcel fixed effects to address most types of compositional shifts in housing

transactions. Nevertheless, this cannot rule out one scenario of composition shift. Some

homes may be more hurricane-resistant due to structural factors and material resiliency, but

it may only be observable or salient to buyers after a hurricane hits. Therefore, hurricanes

could provide an opportunity to overcome this information asymmetry problem and lead to

more transaction of these higher-quality homes.

This mechanism has two testable implications. First, hurricanes might lead to a greater

valuation of home characteristics associated with hurricane resistance. Second, if so valued,

hurricanes should induce a compositional shift toward these characteristics in transacted

homes. Unfortunately, such characteristics – building and roof materials, etc. – are not

easily observable.45 Here, we provide a partial test of these implications using observed

characteristics that are predictors of disaster resistance. These include the house’s age and

effective age, as newer homes (or newly-renovated homes) are more resistant to hurricanes

due to advanced technology and more stringent building codes. Another characteristic is the

number of stories, as taller buildings are more prone to wind damage, all else equal.

We first test for differential capitalization using the following equation:

log(Priceimy) =β1Hurrimy + γ′HouseChariy + η′Hurrimy ×HouseChariy
+Xiy + δht + δhm + δhcy + εimy.

(4)

45The assessment data contains flags for building quality and roof material. However, our explo-
ration revealed serious inconsistencies across these measures, in addition to patchy coverage.
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Figure 6: Changes in Characteristics of Transacted Homes

(a) Lot Size
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(b) House Age
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Notes: estimates from a variant of equation (1) are plotted with their 95% confidence intervals. The
dependent variable in each panel is indicated in the caption above the graph. The results are based
on the full sample of Florida home sales. The specification controls for census tract, month, and
county-year fixed effects. Standard errors are clustered by county.
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Here, we augment the standard DD specification with an interaction between the treatment

indicator (Hurrimg) and each of the home characteristics. η captures the differential capi-

talization effect during the adjustment period. As reported in Table A6, the results show no

differential capitalization effect for house age or for being a one-story building. We also find

a smaller price effect for being recently renovated, in contrast to the expectation that such

homes could be more resistant to hurricanes.

Following the second testable implication, we also test for any systematic changes in

these variables among transacted homes. We do so by switching the outcome variable in

equation (1) to these characteristics. As shown in Figure 6, none of these characteristics

experience detectable changes after hurricane exposure. If anything, there is a gradual rise in

average house age, which is likely a mechanical effect due to the aging of the housing stock.

Additional mechanism 3: speculative buyers or investors

The last alternative mechanism that we explore is speculation. Disasters may open up oppor-

tunities for developers and other risk-neutral agents to buy properties in damaged areas and

renovate them for profit, as suggested by anecdotal evidence.46 To test for this mechanism,

we examine the composition of sales in terms of (1) individuals versus non-individuals and

(2) in-state versus out-of-state buyers.

In our data, we observe which transactions involve any non-individual buyers, and these

account for 13.2% of all transactions in the sample. We again employ the event study speci-

fication but with an indicator for the involvement of non-individual buyers as the dependent

variable. Results are plotted in Panel (a) of Figure 7. While we observe a slightly decreasing

trend in non-individual buyers, this trend is not only statistically insignificant in the three

post-hurricane event years (after which it reverses), but it also appears to predate the hurri-

cane. Overall, the pattern is not indicative of any consistent change in investor purchases in

the immediate aftermath of a hurricane, and we conclude that institutional investing therefore

cannot explain the housing market dynamics in our setting.

To determine which buyers live out-of-state, we use the buyer address recorded in the

transaction data. Approximately 54% of buyers use the address of the transacted property

as their corresponding address, reflecting their intention to immediately inhabit the property.

Among the remaining buyers, an out-of-state address likely reflects purchases by investors

or those acquiring a second home. These buyers account for 15.1% of all purchases in our

46For example, see City Lab, https://www.citylab.com/equity/2020/03/nashville-tornado-real-
estate-speculators-opportunity-zone/607558/, or the Wall Street Journal, https://www.wsj.com/
articles/the-new-storm-chasers-real-estate-disaster-investors-11564498767.
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Figure 7: Testing for Speculative Buyers

(a) Non-individual Buyers
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Notes: estimates from a variant of equation (1) are plotted with their 95% confidence intervals. The
dependent variable is an indicator for non-individual buyer in Panel (a) (N = 7,216,109), and an
indicator for out-of-state buyer in Panel (b) (N = 6,859,171). The models control for census tract,
month, and county-year fixed effects. Standard errors are clustered by county.

sample. We again estimate a variant of equation (1), with an indicator for being out-of-state

on the left hand side. The results, plotted in Panel (b) of Figure 7, show no movement in the

fraction of transactions that are made by out-of-state buyers, providing further evidence that

our market dynamics are very unlikely to be driven by an increase in speculative buying.

4.4 Implications for Population Turnover

The equilibrium shifts in the housing market we documented in the previous section may af-

fect the income and wealth distributions of impacted regions, and these could have associated

demographic consequences for hurricane-battered communities. In this section, we turn our

attention to buyer income. In this analysis, we focus on the subsample of home buyers for

whom we obtained a high-quality match in HMDA records (“HMDA sample” henceforth),

where we observe buyer income. The HMDA sample is therefore a subset of all transactions

with a mortgage (“borrower sample” henceforth). In this section, we begin by comparing

samples to gauge the representativeness of the HMDA sample relative to both the borrower

and full samples, and then proceed in estimating the equilibrium effect of hurricane exposure

on income and other demographic characteristics.

Table A1 reports the mean and median of characteristics of transacted homes in the three

samples. The full sample contains more outlier homes which are expensive and have larger

lot sizes than typical homes. Since these are likely to be estates of the wealthy, these pur-
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Figure 8: Results from HMDA Sample
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Notes: estimates from equation (1) are plotted with their 95% confidence intervals. The
dependent variable is the log of transaction price in Panel (a) (N = 1,928,142), and the
log of buyer income in Panel (b) (N = 1,846,467). The models include standard hedonic
variables, the distance to coast interacted with year indicators, and census tract, month, and
county-year fixed effects. Standard errors are clustered by county.
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chases would be less likely to be financed by mortgages. Most property characteristics are

otherwise comparable at both the mean and median of their values across the three samples.

We also confirm that the borrower and HMDA samples have similar post-hurricane price

dynamics by re-estimating equation (1) in both of these samples. Results are plotted in Panel

(a) of Figure 8 for the HMDA sample and Appendix Figure A2 for the borrower sample, and

both resemble the pattern estimated in the full sample. We also examine whether hurricanes

affect the distribution of cash buyers versus borrowers (Appendix Figure A1), and find no

evidence of a significant change. Overall, the transactions in the HMDA sample appear to

be quite comparable to the two larger samples based on observable characteristics. Never-

theless, we caution that there are differences between cash buyers and borrowers, and also

between those borrowing from large lenders covered by HMDA and those borrowing from

smaller ones.

Using the HMDA sample, we now estimate the effect of hurricanes on the average in-

come of new buyers by replacing the outcome variable in equation (1) with buyer income

(Figure 8, Panel (b)). We find the dynamics of post-hurricane income to be strikingly similar

to those of prices: the average income increases by around 4% in the first event year, nearly

7% in the second, and reverts to 4% in the third before returning to its pre-hurricane baseline

in later years. Table A8 reports the standard DD coefficients for each property type, where

we find a similar increase in buyer income across-the-board.

Given our previous finding that homes transacted post-hurricane are similar to those

transacted before, these results suggest that comparable homes are being sold to higher-

income buyers. There are several plausible reasons. First, high-income households gener-

ally have a higher willingness-to-pay for housing in any location.47 In an impacted market

after a storm, higher-income households are thus more likely to outbid others. Second, fi-

nancial institutions may become more cautious about lending in hurricane-struck locations.

For example, they could be less willing to issue larger loans to accommodate a higher home

price.48 These results, therefore, might indicate that hurricanes exacerbate pre-existing con-

straints and further limit location choices for lower-income households.

To put these findings in context, approximately 28% of local homes changed hands dur-

47This is a common feature in models of locational choice with heterogeneous income levels, e.g.
Banzhaf and Walsh (2008).

48A recent study finds that lenders securitize a larger fraction of their loans after a hurricane to
transfer risks to government-sponsored enterprises such as Fannie Mae and Freddie Mac (Ouazad
and Kahn, 2021). Conforming loans must not exceed certain loan limits. This requirement could
further tighten credit constraints facing lower-income households.
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ing the three-year adjustment period. If our results on HMDA buyers generalize to the non-

borrower side of the market, the implications for local communities are profound. Given

that homeownership is often a long-term decision, this pattern may result in a lasting change

in the economic profile of affected communities toward higher income, and likely higher

wealth. In turn, the influx of higher-income households could trigger further gentrification

in these neighborhoods, as the new residents demand (and are able to pay for) new local

amenities (Card et al., 2008; Guerrieri et al., 2013).

In addition to income, we also examine the race and gender profiles of buyers from

the HMDA sample. Based on the race of the mortgage applicant and co-applicant (when

applicable)49, we classify each application into three categories: (1) the applicant(s) is non-

Hispanic white; (2) the applicant(s) is a racial or ethnic minority; (3) one applicant is non-

Hispanic white while the other is a minority. We estimate the changes in these outcomes in

three years post-hurricane using a standard DD specification and report the results in Table

A9. The estimates are all very small. We find a 0.2 percentage points decrease in the fraction

of non-Hispanic white applicants from a 60.5% baseline, which is both economically small

and statistically insignificant. We also find a small increase of 0.5 percentage points for

minority applicants and a 0.3 percentage points decrease for pairs of applicants with mixed

minority status. Similarly, we classify applications into two categories based on whether all

applicants are female and estimate a 0.4 percentage points increase in the fraction of female

applicants out of a 29.6% baseline. We conclude that there is no meaningful change to the

overall racial or gender profile of buyers post-hurricane.

4.5 Heterogeneous Effects

In this section, we explore the heterogeneous effects of differential wind speed exposure. As

described in Section 2.2, we further classify exposure as either low intensity (64-95 kn wind

speed) or high intensity (96 kn and above). In our sample, high-intensity exposure is limited

because we determine exposure for each point within the path of the hurricane winds. If a

category 3 or higher hurricane passes through a location at lower than 96 kn wind speeds,

we do not consider this location to have been exposed to high-intensity winds. Nevertheless,

exploring this heterogeneity helps bridge our results to the existing literature, which largely

focuses on the information content of a single, high-intensity hurricane.

To examine heterogeneity, we estimate a variant of equation (1) which allows for separate

4940.55% of the mortgage applications in HMDA have a co-applicant.
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Figure 9: Heterogeneous Effects by Hurricane Intensity – Full Sample
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Notes: estimates for separate wind categories are plotted with their 95% confidence inter-
vals. The results are based on the full sample of Florida home buyers (N = 7,216,109).
The model includes standard hedonic variables, the distance to shoreline interacted with
year indicators, and census tract, month, and county-year fixed effects. Standard errors are
clustered by county.

post-hurricane dynamics for each of the two levels of exposure, and we plot the post-period

coefficients in Figure 9.50 Since most instances of exposure are of low intensity, the price

dynamics generated by low-intensity exposure are very similar to the overall pattern shown

in Figure 2. The high-intensity exposure estimates, on the other hand, suffer from wider

errors because of the significantly lower treatment saturation.51 The general pattern is very

similar: the average price jumps up in event year 0, peaks at event year 1, and tapers down

in subsequent years. The point estimates are larger for the high-intensity storms, with a peak

of 15% compared to 10% for low intensity. The effect also appears to be more persistent:

the fourth year after high-intensity exposure still experiences a statistically significant 5%

increase in housing prices, whereas the corresponding estimate is small and insignificant

for low-intensity exposure. The lack of power, however, ultimately constrains our ability to

50We pool the pre-hurricane indicators for the two types of exposure to enhance power, and as
before, the pre-period indicators are both flat and statistically zero.

51At most 1% of homes are ever sold from areas affected by category 3 and above wind speeds
in any year before or after a hurricane, as such wind speeds rarely affected Florida over our sample
period (see the right panel of Figure 1, but recall that it depicts tract-centroid and not individual home
category 3 hurricane exposure).
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detect statistically differential effects.

5 Conclusion

This paper provides two sets of findings. First, we estimate the equilibrium dynamics oc-

curring in the Florida housing market in the wake of a hurricane. We find an increase in

housing prices and a concurrent decrease in transaction probability, both lasting up to three

years. The direction and duration of these effects are consistent with the underlying mech-

anism whereby a part of the housing stock is first damaged by hurricanes, and eventually

restored. We find little empirical support for alternative explanations. Second, we examine

demographic changes in local communities associated with these market adjustments and

find that incoming home buyers during the recovery period have higher average income con-

ditional on observed characteristics of transacted homes, resulting in an enduring increase in

the distribution of income, and likely wealth in these communities.

Several interesting implications emerge from these findings. First, our results suggest

that there is a limited demand response from any updated beliefs about the riskiness of an

affected location. In the short run, any behavioral response on the demand side of the market

is dominated by the effect of the supply shock. Moreover, we remarkably find no evidence

that hurricanes fundamentally change the long-run demand for housing in affected areas. It

remains an open question whether this is due to a lack of substitutes for the desirable ameni-

ties of the impacted areas (Glaeser and Gyourko, 2005), the resilience of local economies,

or behavioral or institutional barriers in the housing market preventing a full response to

disaster risks (Keys and Mulder, 2020; Bakkensen and Barrage, 2021; Ouazad and Kahn,

2021).

In addition, our transaction probability findings imply a close-to-full recovery in the

housing market after three years. Such timeline for the recuperation of physical capital is

in line with past studies on capital destruction by natural disasters (Gignoux and Menéndez,

2016; Kocornik-Mina et al., 2020). Since the incentive to rebuild is governed by the com-

parison between construction costs and housing prices (Gyourko and Saiz, 2004), higher

housing prices during the adjustment period provide a strong price signal for the recovery,

even for areas with high-intensity exposure. This stands in contrast to the evidence from

New Orleans after Hurricane Katrina, where recovery was slow. Due to unexpected levee

failures, Katrina’s impacts in New Orleans were much more severe than most other hurri-

canes. The widespread damage there seemed to have affected industries, infrastructure, and
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local amenities enough to fundamentally alter the housing market equilibrium in the long

run. While New Orleans is likely an outlier, an important matter for further research will be

to evaluate the sensitivity of market outcomes and long-run welfare consequences to different

levels of damage.

Further, our results on higher-income home buyers and subsequent gentrification point

to a potential scenario of more expensive future hurricane damage claims. For the privately

insured, these risks should eventually be reflected in higher premiums.52 But for publicly-

funded insurance and disaster relief programs under FEMA, HUD, and other federal and

local government agencies, these risks could come at the expense of taxpayers (Dinan, 2016).

As of 2021, the National Flood Insurance Program was over 20 billion dollars in debt even

after Congress cancelled an additional 16 billion in 2017. To the extent that homeowners are

counting on public assistance or insurance rates not reflective of actual risks, some of this

gentrification may be the result of moral hazard, highlighting the need for program reform as

previously advocated for by some researchers (Congressional Budget Office, 2017; Kousky

et al., 2018).

While we cannot directly quantify the welfare impacts of post-hurricane housing market

dynamics, our results suggest that there may generally be a greater disparity in welfare across

groups. Higher home values following a hurricane can provide a windfall gain to those exist-

ing homeowners who are able to quickly rebuild and sell their homes, helping mitigate some

of the other losses they may suffer (other assets, employment, etc.) or even allowing them to

move to better economic opportunities (Deryugina, 2017; Deryugina et al., 2018; Basker and

Miranda, 2018). These opportunities, however, may not be available to all those who have

sustained damage to their homes and cannot afford a speedy recovery. Additionally, housing

market adjustments following a disaster could exacerbate pre-existing financial constraints

and limit housing opportunities for lower-income households. This could result in differ-

ential sorting and subsequent gentrification, ultimately leading to a greater gap in location

choice across income groups. As climate-related disaster risk continues to rise, quantifying

the unequal welfare impacts of disasters and understanding their institutional factors is a rich

area for continued research.

52Many private homeowners’ insurance policies cover wind damages, and as of 2018,
around 3.4% of Florida’s flood insurance policies were provided by private insurers
(see https://riskcenter.wharton.upenn.edu/wp-content/uploads/2018/09/Florida-Private-Flood-Issue-
Brief.pdf).
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Appendix

Figures

Figure A1: Hurricane Effects on the Share of Sales with Mortgage
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Notes: estimates from a variant of equation (1) are plotted with their 95% confi-
dence intervals. The dependent variable is an indicator of whether the transaction
involves a mortgage. The results are based on the full sample (N = 7,226,845).
The model includes census tract, month, and county-year fixed effects. Standard
errors are clustered by county.
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Figure A2: Hurricane Effects on House Prices – Borrower Sample
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Notes: estimates from Equation (1) are plotted with their 95% confidence inter-
vals. The results are based on the borrower sample (N = 4,083,298). The model
controls for standard hedonic variables, the distance to shoreline interacted with
year indicators, and census tract, month, and county-year fixed effects. Standard
errors are clustered by county.
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Tables

Table A1: Summary Statistics of Housing Transactions

Full Sample Borrower Sample HMDA Sample

Variable Mean Median Mean Median Mean Median

Price 272,775 155,000 238,031 178,000 252,401 187,900
Assessed Value 149,678 103,326 149,064 110,640 159,264 117,914
No. of Buildings 0.939 1 0.947 1 0.942 1
No. of Stories 1.25 1 1.23 1 1.24 1
No. of Bathrooms 1.79 2 1.86 2 1.86 2
Lot Size (sq. ft.) 11,605 7,143 11,708 7,500 11,906 7,700
House Age 22.1 19 19.7 16 20.9 17
Effective House Age 17.7 15 15.3 12 16.3 13
Distance to Shore 2.32 6.95 7.52 2.61 7.04 2.40
Loan Amount – – 194,797 150,000 198,277 157,250
Buyer Income – – – – 113,116 72,000

N 7,414,454 4,207,160 1,972,728
% Single Family 69.7 76.1 76.9
% Condo 24.1 17.4 16.9
% Townhouse 6.2 6.6 6.2

Notes: The unit of observation is a transaction. The full sample contains all transactions.
The borrower sample contains all transactions with a mortgage. The HMDA sample
contains all transactions that have a valid match to the HMDA records.
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Table A2: Summary Statistics of the Parcel-Year Panel

Statistic All Single Family Condominium Townhouse

Transacted (0/1) Mean 0.102 0.103 0.101 0.103
Assessed Value Mean 149,437 154,697 136,827 132,850

Median 105,450 110,500 84,222 107,650
No. of Buildings Mean 0.963 0.993 0.880 0.967

Median 1 1 1 1
No. of Stories Mean 1.22 1.11 2.06 1.26

Median 1 1 1 1
No. of Bathrooms Mean 1.67 1.75 1.37 1.98

Median 2 2 2 2
Lot Size (sq. ft.) Mean 16,876 16,093 29,732 4,164

Median 9,027 9,500 8,802 3,485
House Age Mean 30.1 31.8 27.7 21.2

Median 28 28 28 21
Effective House Age Mean 23.8 23.9 25.1 18.0

Median 22 21 26 18
Distance to Shore (miles) Mean 6.07 7.29 6.07 3.10

Median 1.90 2.20 3.23 0.81

N (parcel-year) 49,363,437 33,619,163 12,834,600 2,909,674
Share (%) 100 68.11 26.00 5.89
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Table A3: The Effect of Hurricanes on Housing Prices

(1) (2) (3) (4)
Log(Price) All Single Family Condominium Townhouse

Event Year 0-2 0.0589∗∗∗ 0.0546∗∗∗ 0.0824∗∗∗ 0.0496∗∗∗

(0.00979) (0.0111) (0.00899) (0.0152)

Age -0.00443∗∗∗ -0.00360∗∗∗ -0.0159∗∗∗ -0.00782∗∗∗

(0.000732) (0.000409) (0.00527) (0.00110)

Effective Age -0.00810∗∗∗ -0.00725∗∗∗ -0.00248 -0.0136∗∗∗

(0.000823) (0.000889) (0.00425) (0.00457)

Lot Size (1,000 sq. ft.) 0.00276∗∗∗ 0.00342∗∗∗ -0.000321 0.0325∗∗

(0.000476) (0.000254) (0.000297) (0.0150)

N 7,216,109 5,029,557 1,741,743 444,809
R2 0.571 0.556 0.614 0.604

County-Year-Type FEs Yes Yes Yes Yes
Month-Type FEs Yes Yes Yes Yes
Tract-Type FEs Yes Yes Yes Yes

Notes: this table reports estimates from a variant of equation (1), where the set of event
indicators are replaced by a single indicator of whether the transaction occurs in year 0-2
following exposure to a hurricane. The dependent variable is the log of transaction price.
The unit of analysis is a transaction. The regressions also control for the number of stories
and the number of bathrooms in bins, an indicator for event year 3-10, and the distance to
shoreline interacted with year indicators. Standard errors (in parentheses) are clustered at the
county level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A4: Robustness Checks on Housing Price Results

(1) (2) (3)
Boundary Obs. Repeat Hits Overlapping Events

Event Year 0-2 0.0764∗∗∗ 0.0483∗∗∗ 0.0650∗∗∗

(0.0120) (0.00965) (0.0118)

N 3,031,677 5,739,937 3,128,012
R2 0.590 0.563 0.600

County-Year-Type FEs Yes Yes Yes
Month-Type FEs Yes Yes Yes
Tract-Type FEs Yes Yes Yes

Notes: this table reports estimates from a version of equation (1), where the set of
event indicators are replaced by a single indicator of whether the transaction occurs
in year 0-2 following exposure to a hurricane. The unit of analysis is a transactions.
Each column corresponds to a different subset of the full sample. Column (1) drops
all observations within 10 miles to the boundary of hurricane-scale wind exposure.
Column (2) drops all observations that have been exposed to two hurricanes within
three years through out the sample period. Column (3) is based on a subset of
hurricanes, selected so that they either coincide with another hurricane in the set
or are not within three years of any other hurricanes. The observations associated
with hurricanes outside of this set are dropped. The regressions also control for the
number of stories and the number of bathrooms in bins, an indicator for event year
3-10, and the distance to shoreline interacted with year indicators. Standard errors
(in parentheses) are clustered at the county level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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Table A5: The Effect of Hurricanes on Transaction Probability

(1) (2) (3) (4)
1(Transacted) All Single Family Condominium Townhouse

Event Year 0-2 -0.00717∗∗ -0.00408 -0.0240∗∗ -0.00394
(0.00341) (0.00326) (0.0120) (0.00240)

N 49,302,345 33,560,908 12,832,339 2,909,058
R2 0.0856 0.0866 0.0834 0.0977

County-Year FEs Yes Yes Yes Yes
Type-Year FEs Yes Yes Yes Yes
Parcel FEs Yes Yes Yes Yes

Notes: this table reports estimates from a version of equation (3), where the set
of event indicators are replaced by a single indicator of whether the transaction
occurs in year 0-2 following exposure to a hurricane. The dependent variable is
an indicator of whether a transaction takes place that involves the given parcel in a
given year. The unit of analysis is a parcel-year. The regressions also control for
effective age, lot size, an indicator for event year 3-10, and the distance to shoreline
interacted with year indicators. Standard errors (in parentheses) are clustered at the
county level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A6: Differential Capitalization

(1a) (1b)
Log(Price) Main Effect Interaction Effect

Event Year 0-2 0.0833∗

(0.0450)

House Age -0.00614∗∗∗ 0.000825
(0.000869) (0.000727)

Effec. House Age -0.00912∗∗∗ 0.00223∗∗

(0.000822) (0.000937)

One-Story -0.0687∗∗∗ 0.0171
(0.0206) (0.0198)

N 7,216,109
R2 0.560

Notes: this table reports estimates from equation (4). Column (1a)
reports the coefficients associated with the treatment indicator and
home characteristics, and column (1b) reports the coefficients of
the interaction term of each of the characteristics with the treatment
indicator. The model also controls for lot size and number of bath-
rooms and their interaction with the event indicator, an indicator
for event year 3-10, the distance to shoreline interacted with year
indicators, and tract-type, month-type, and county-year-type FEs.
Standard errors (in parentheses) are clustered by county. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7: The Effect of Hurricanes on Flood Insurance Claims

(1) (2) (3)
Claim Count Avg Claim Total Claim

Hurricane 5.804∗∗ 4461.0∗∗∗ 271517.8∗

(2.584) (763.2) (144764.0)

N 642804 642804 642804
R2 0.0128 0.0212 0.00699
Mean D.V. 0.117 218.9 3539.1

County-Year FEs Yes Yes Yes
Month FEs Yes Yes Yes
Tract FEs Yes Yes Yes

Notes: this table reports estimates from a equation (D1), where a flood in-
surance outcome is regressed on an indicator of current-month exposure to a
hurricane and a set of fixed effects as indicated in the bottom panel. The unit
of analysis is census-tract-by-month. The dependent variable is the num-
ber of building damage claims in the NFIP, the average claim amount, and
the total claim amount in columns (1)-(3), respectively. Standard errors (in
parentheses) are clustered by county. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A8: The Effect of Hurricanes on Housing Prices and Buyer Income
(HMDA Sample)

(1) (2) (3) (4)
All Single Family Condominium Townhouse

Dependent variable: log price

Event Year 0-2 0.0540∗∗∗ 0.0561∗∗∗ 0.0517∗∗∗ 0.0488∗∗∗

(0.00494) (0.00529) (0.0105) (0.00433)

N 1,928,142 1,482,160 326,189 119,793
R2 0.721 0.712 0.767 0.786

Dependent variable: log income

Event Year 0-2 0.0414∗∗∗ 0.0444∗∗∗ 0.0334∗∗∗ 0.0454∗∗∗

(0.00538) (0.00590) (0.0110) (0.00531)

N 1,846,467 1,421,677 309,904 114,885
R2 0.417 0.405 0.457 0.363

County-Year FEs Yes Yes Yes Yes
Month FEs Yes Yes Yes Yes
Tract FEs Yes Yes Yes Yes

Notes: this table reports estimates from a version of equation (1), where the set of
event indicators are replaced by a single indicator of whether the transaction occurs
in year 0-2 following exposure to a hurricane. The dependent variable is the log of
transaction price in the top panel and the log of buyer income in the bottom panel.
The unit of analysis is a transaction. The sample contains all transactions that have
a match with the HMDA records. The regressions also control for home character-
istics, an indicator for event year 3-10, and the distance to shoreline interacted with
year indicators. Standard errors (in parentheses) are clustered at the county level. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A9: The Effect of Hurricanes on Additional Buyer Demographics
(HMDA Sample)

(1) (2) (3) (4)
White Minority Mixed Female

Event Year 0-2 -0.00244 0.00534 -0.00290∗∗∗ 0.00432∗∗

(0.00337) (0.00346) (0.000973) (0.00196)

N 1,928,142 1,928,142 1,928,142 1,928,142
R2 0.225 0.240 0.009 0.034
Mean D.V. 0.605 0.364 0.031 0.296

County-Year-Type FEs Yes Yes Yes Yes
Month-Type FEs Yes Yes Yes Yes
Tract-Type FEs Yes Yes Yes Yes

Notes: this table reports estimates from a version of equation (1), where the set
of event indicators are replaced by a single indicator of whether the transaction
occurs in year 0-2 following exposure to a hurricane. The dependent variables in
columns (1)-(3) represent the race and ethnicity combination of the applicant and
co-applicant (when applicable). Respectively, they are an indicator of the appli-
cant(s) being non-Hispanic white, an indicator of the applicant(s) being a racial or
ethnic minority, and an indicator of one applicant being non-Hispanic white while
the other is a minority. The dependent variable in column (4) is an indicator of the
applicant(s) being female. The unit of analysis is a transaction. The regressions
also control for home characteristics, an indicator for event year 3-10, and the dis-
tance to shoreline interacted with year indicators. Standard errors (in parentheses)
are clustered at the county level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Online Appendices

A Additional Figures and Tables

Figure A3: Demographics in Florida Counties

(a) Percent White (b) Percent Hispanic or Latino

(c) Percent Black (d) Median Age

Source: Census Data Mapper based on data from the 2010 Census.
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Figure A4: Family and Housing Statistics in Florida Counties

(a) Percent Family Households (b) Percent Occupied Housing Units

(c) Homeowner Vacancy Rate (d) Rental Vacancy Rate

Source: Census Data Mapper based on data from the 2010 Census.
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Table A10: Variation in Hurricane Event Time Indicators (Housing Price Model)

Event Time

Hurricane -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Andrew92 . . . . . . . . . . . . . 1.0 1.5 1.4 1.4
Opal95 . . . . . . . . . . 0.2 0.3 0.3 0.4 0.4 0.4 0.3
Earl98 . . . . . . . 0.2 0.3 0.3 0.4 0.4 0.4 0.3 0.2 0.2 0.2
Georges98 . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Irene99 . . . . . . 2.8 3.4 3.6 4.0 4.2 4.6 3.7 2.4 1.6 1.8 2.5
Charley04 . 1.3 2.0 2.1 2.3 2.5 2.5 2.1 1.4 0.9 0.9 1.4 1.5 1.5 1.8 1.8 1.9
Frances04 . 1.0 1.4 1.6 1.8 2.1 2.3 2.0 1.3 0.8 0.9 1.2 1.1 1.2 1.5 1.6 1.7
Jeanne04 . 1.1 1.4 1.6 1.8 1.9 2.0 1.5 1.0 0.7 0.7 1.0 1.1 1.1 1.3 1.4 1.4
Ivan04 . 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Dennis05 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Katrina05 0.5 0.8 0.8 0.8 0.9 1.0 0.9 0.6 0.4 0.3 0.6 0.6 0.6 0.7 0.7 0.7 0.6
Wilma05 2.6 3.1 3.4 3.8 4.1 4.6 3.4 2.2 1.5 1.8 2.5 2.6 2.6 3.0 3.1 3.1 2.3
Hermine16 0.0 0.0 0.1 0.1 0.1 0.1 0.0 . . . . . . . . . .
Matthew16 0.6 0.7 0.9 1.0 1.0 0.7 0.1 . . . . . . . . . .
Irma17 1.7 2.0 2.1 2.3 1.9 0.3 . . . . . . . . . .

Total 5.0 8.5 10.2 11.3 11.8 10.9 11.7 10.3 8.4 8.1 9.3 10.7 9.9 10.2. 10.5 10.8 10.7

Notes: all numbers in percentage points. Definition of exposure given in Section 2.2.

52



Table A11: Variation in Hurricane Event Time Indicators (Transaction Probability Model)

Event Time

Hurricane -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Andrew92 . . . . . . . . . . . . . . 1.4 1.4 1.4
Opal95 . . . . . . . . . . . 0.3 0.3 0.3 0.3 0.3 0.3
Earl98 . . . . . . . . 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Georges98 . . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Irene99 . . . . . . . 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
Charley04 . . 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9
Frances04 . . 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Jeanne04 . . 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Ivan04 . . 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Dennis05 . 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Katrina05 . 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Wilma05 . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Hermine16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 . . . . . . . . . .
Matthew16 0.8 0.8 0.8 0.8 0.8 0.8 0.8 . . . . . . . . . .
Irene17 1.9 1.9 1.9 1.9 1.9 1.9 . . . . . . . . . . .

Total 2.7 5.8 9.2 9.2 9.2 9.2 7.3 9.6 9.9 9.9 9.9 10.2 10.2 10.2 11.6 11.6 11.6

Notes: all numbers in percentage points. Definition of exposure given in Section 2.2.
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Table A12: Variation in Category 3+ Hurricane Event Time Indicators (Housing Price Model)

Event Time

Hurricane -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Andrew92 . . . . . . . . . . . . . 0.3 0.5 0.4 0.4
Opal95 . . . . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Earl98 . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Georges98 . . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Irene99 . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Charley04 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Frances04 . 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1
Jeanne04 . 0.1 0.1 0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Ivan04 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dennis05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Katrina05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wilma05 0.3 0.3 0.4 0.4 0.4 0.4 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.2
Hermine16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . . . . . . . . . .
Matthew16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . . . . . . . . . .
Irma17 0.2 0.2 0.2 0.2 0.2 0.0 . . . . . . . . . . .

Total 0.5 0.6 0.8 0.9 0.9 0.8 0.7 0.5 0.3 0.3 0.4 0.4 0.4 0.8 1.0 1.0 0.9

Notes: all numbers in percentage points. Definition of exposure given in Section 2.2.
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Table A13: The Impacts of Hurricanes on Prices and Transaction Probability (Event Study)

(1) (2) (3)
Price – Full Sample Price – Repeat Sales Probability – Full Sample

Event Year -6 -0.0150 -0.0208 -0.00423
(0.0233) (0.0447) (0.00276)

Event Year -5 -0.00634 -0.0151 -0.00282
(0.0290) (0.0546) (0.00347)

Event Year -4 -0.0172 -0.0178 -0.000101
(0.0144) (0.0471) (0.00169)

Event Year -3 -0.0746 -0.0252 0.000857
(0.0608) (0.0394) (0.00180)

Event Year -2 -0.0165 -0.0263 -0.000334
(0.0229) (0.0328) (0.00168)

Event Year 0 0.0502∗∗∗ 0.0531 -0.00747∗

(0.0121) (0.0416) (0.00431)
Event Year 1 0.102∗∗∗ 0.128∗∗∗ -0.00319∗

(0.0231) (0.0255) (0.00188)
Event Year 2 0.0202 0.0840∗∗∗ -0.00225

(0.0265) (0.0278) (0.00293)
Event Year 3 0.00906 0.0257 -0.00168

(0.00986) (0.0317) (0.00239)
Event Year 4 -0.00741 0.0114 0.000601

(0.0199) (0.0301) (0.00224)
Event Year 5 0.00281 0.0380 0.00130

(0.0207) (0.0314) (0.00134)
Event Year 6 -0.00326 0.0641∗ 0.00434∗

(0.0233) (0.0352) (0.00244)
Event Year 7 0.00654 0.0540∗∗ 0.000622

(0.0186) (0.0235) (0.00176)
Event Year 8 0.0354 0.0600∗∗∗ 0.00143

(0.0297) (0.0136) (0.00171)
Event Year 9 -0.0257 0.0502∗∗∗ 0.00230∗

(0.0319) (0.0150) (0.00131)
Event Year 10 0.00509 0.0459∗∗ 0.00281

(0.0108) (0.0190) (0.00193)

County-Year-Type FEs Yes Yes Yes
Month-Type FEs Yes Yes Yes
Tract FEs Yes
Parcel FEs Yes Yes
Controls Yes Yes Yes
N 7,216,109 1,338,384 49,302,345
R2 0.571 0.778 0.0856

Notes: estimates from equations (1)-(3) are reported in columns (1)-(3), respectively. The unit of
analysis is a transaction in columns (1)-(2), and a parcel-year in column (3). The controls include bins
of number of stories and number of bathrooms, lot size, house age, effective age, and the distance to
shoreline interacted with year indicators. Standard errors (in parentheses) are clustered at the county
level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B Determining Hurricane Exposure

B.1 Imputing Maximal Reach Radius of 96 Knots Wind Speed
In this section, we describe how we calculate the maximal reach radius associated with a
wind speed of 96 nautical miles per hour (kn). For each hurricane track point, we observe
the radii associated with a wind speed of 34, 50, and 64 kn. We estimate the relationship
between the maximal reach radii and wind speed using the following model:

log(Maxradiussht) = αht + β1Speed+ β2Speed
2 + εsht (5)

where αht are hurricane-track-point fixed effects and Speed (s) takes one of the three speed
values available. Note that instead of specifying the minimum pressure and maximum wind
speed, we choose to employ a set of fixed effects which absorb their variations. The relation-
ship between a wind speed threshold and its associated maximal radius is very well captured
by this model as suggested by its estimation’s R2 of 0.93 (0.90 within track-point fixed ef-
fects). The estimated function is negative and concave, suggesting the radius decreases at an
increasing rate as wind speed increases. Full results are reported in Table B1.

Table B1: Wind Speed and Maximal Reach Radius Model

log(Maxradius)

Speed -0.0224∗∗∗

(0.004)

Speed2 -0.0002∗∗∗

(0.00004)

Hurricane-track-point FEs Yes
N 1188
R2 0.93
Within-R2 0.90

Notes: Standard errors in parentheses (clustered at the hurricane-track-point
level). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We use the estimates (including the track-point fixed effect) to predict the maximum radii
for 96 kn wind speeds at track points where the maximum sustained wind speed is actually
above 96 kn. This procedure raises the typical concerns regarding out-of-sample predictions
since 96 kn is not within the support of wind speeds used in the estimation. To address this
concern, we check the validity of our predictions by comparing them to the observed radius
of the maximum speed, which is provided in the Extended Best Track dataset. In particular,
because the radius is strictly decreasing in wind speed, our imputed radius should always
be greater than (or equal to) the radius associated with a 96 kn and above maximum speed
in the cases when such speeds are observed. Our prediction satisfies this condition for over
90% of imputations and is within rounding error53 for 10 of the 13 extrapolations for which

53All radii measurements in the dataset are rounded to the nearest 5 kn.
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Figure B1: Hurricane Track Interpolation

it fails. In these 13 cases, we replace the model’s predicted maximal radius for 96 kn speeds
with the wider observed radius of the maximum speed reached.

B.2 Hurricane Track Interpolation and Exposure Calculation
In this section, we describe the procedure used to assign the exposure status of a home to
a hurricane, with the geometric relationships illustrated in Figure B1. Suppose we want to
determine the exposure status of a home H1 to a hurricane, whose track is recorded by three
observations, P1, P2, and P3. At each track point, we observe the maximal reach radius r(·)
associated with 64 kn wind speed and the maximum wind speed v(·) at the center.

We take the following steps to calculate exposure:

1. We interpolate linearly between neighboring track points (P1 → P2, P2 → P3), and
calculate the distance from the home H1 to each linear segment. For instance, the
distance between H1 and P1–P2 is d(H1, I1), or the distance between H1 and its pro-
jection point I1.

2. We calculate key variables for each projection point by interpolating between the ob-
served track points. These variables are the 64 kn wind speed radius (denoted r(·))
and the center wind speed (denoted v(·)). We assume these values change linearly
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from one observation to another along the track segment. For example, the 64 kn wind
speed radius for I1 is calculated using the observed 64 kn radii of P1 and P2 as follows:

r(I1) =
d(I1, P2)

d(P1, P2)
r(P1) +

d(I1, P1)

d(P1, P2)
r(P2).

Similarly, v(I1) is calculated using v(P1) and v(P2):

v(I1) =
d(I1, P2)

d(P1, P2)
v(P1) +

d(I1, P1)

d(P1, P2)
v(P2)

3. We also calculate the distance of the home to each track point: d(H1, P1), d(H1, P2),
and d(H1, P3). We thus have a collection of points representing the potential exposure
set SH1 = {P1, I1, P2, I

′
1, P3} with corresponding distances to H1, 64 kn wind speed

radii, and center wind speeds.

4. For each point in SH1 , we check two conditions: (1) whether the center wind speed is
above 64 kn (e.g. v(I1 ≥ 64)); (2) whether H1 is within the 64 kn wind speed radius
(e.g. d(H1, I1) < r(I1)). If both are satisfied for any point in SH1 , H1 is considered
to be exposed to the hurricane.54

Our approach takes care of two other general cases where the path of a hurricane does
not curve around a home the way it does with H1: the potential exposure set of H2 consists
of {P1, P2, I2, P3}, while that of H3 consists of {P1, P2, P3}. In practice, a hurricane track
is observed in many more segments. We pre-select the four segments closest to each home
Hi and determine exposure by checking the above conditions for each point in the full set
SHi

generated by these segments.

54Generally, the interpolated radius is either zero or very close to zero at any point where the center
wind speed does not reach 64 kn, in which case exposure is not triggered as the first condition is not
satisfied.
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C Zillow-HMDA Matching Procedure
We use the following procedure to match the HMDA data to transactions:

1. We first select the subset of HMDA loan applications that are (1) successful and (2)
whose purpose is a home purchase.

2. We create all possible pairs of observations from Zillow and HMDA with the same
year, census tract, and loan amount (in 1000s) using the “joinby” command in Stata.
A small percentage of lenders make multiple loans of the same amount in a single
census tract every year. If there also exist multiple Zillow records with these same
characteristics, we drop all such matches because we cannot infer the exact mapping
between the multiple observations on the two sides.

3. Lender names may be recorded differently across and even within Zillow and HMDA.
Extensive manual inspection revealed general patterns of mismatch, and we apply cor-
responding corrections to both datasets. For example, we replace acronyms such as
“FCU” and “NB” with their full forms (“Federal Credit Union” and “National Bank”).

4. We calculate the Jaccard similarity index for every pair of HMDA-Zillow observations
using the “matchit” command in Stata. This index indicates the extent of the overlap
between the strings containing the lenders’ names from both datasets.

5. We keep all pairs with a Jaccard similarity index above an acceptable threshold, except
for those joining a single HMDA record to multiple Zillow transactions each with an
index above this threshold. The threshold is chosen so that we observe it to produce
the correct pairing in large random subsamples chosen from every year in our data.
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D Flood Insurance Data and Analysis
The National Flood Insurance Program (NFIP) is a public insurer under the Federal Emer-
gency Management Agency (FEMA) that writes over 95% of flood insurance policies in the
United States. We obtain claim-level data which is publicly available on OpenFEMA.55 This
dataset covers the universe of NFIP claims and reports the amount, month of loss, and the
census tract of each claim.

We aggregate claims on residential properties to create a balanced panel at the month-
by-census-tract level of three outcomes: the number of building damage claims, the average
claim amount, and the total claim amount. Since the claims data is at the tract level, we
define hurricane exposure based on the population centroid of each tract.

The regression takes the following form:

Ytmy = β1Hurrtmy + δt + δm + δcy + εtmy, (D1)

where t, m, and y represent census tract, month, and year, respectively. Here, we regress
the outcome of interest (Ytmy) on an indicator for current-month exposure (Hurrtmy) while
controlling for tract, month, and county-year fixed effects. We include all outcomes in levels
because the approximation from log or inverse hyperbolic sine transformation do not work
well if it has a large number of zero observations (Bellemare and Wichman, 2020). Different
from the rest of the paper, our hurricane exposure here is defined for current month because
NFIP claims are linked to the month of loss regardless of when they are filed.

55Accessed at https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims.
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